
Feasibility Study on the Use of a
Genetic Algorithm for the

Generation of Air Traffic Scenarios
Based on Recorded Field Data

Robert D. Oaks

January 27, 2000

Traffic Flow Management Branch, ACT-250
William J. Hughes Technical Center

Atlantic City, New Jersey 08405

ii

Table of Contents
1. Introduction ..1

1.1 Background..1
1.2 Purpose..1
1.3 Scope...2
1.4 Document Organization...2

2. Field Data Based Air Traffic Scenarios..3
2.1 Air Traffic Scenarios ..3
2.2 Playback Scenarios...4
2.3 URET/CCLD Accuracy Scenarios ..5

3. Genetic Algorithm...6
3.1 Introduction to Genetic Algorithms...6
3.2 Population of Chromosomes ..7
3.3 Fitness Function..7
3.4 Selection According to Fitness ...7
3.5 Crossover to Produce New Offspring ..8
3.6 Random Mutation ...8

4. Implementation of the Genetic Algorithm..9
4.1 Introduction to the Implementation ...9
4.2 Program Input .. 10
4.3 Program Processes... 11
4.4 Program Output.. 14

5. Implementation Results ... 15
5.1 Introduction to Implementation Test Runs... 15
5.2 Ability to Solve Test.. 15
5.3 Time to Solve Test.. 20

6. Conclusions .. 22
7. Acronyms .. 23
8. References... 24

iii

List of Figures

Figure 1: Example of an Aircraft Track ..3
Figure 2: Blow-up of the Example Aircraft Track..4
Figure 3: Genetic Algorithm Pseudocode ..6
Figure 4: Individual Contribution of Constraint Bin to Fitness .. 13
Figure 5: Graph of the Fitness Function... 13
Figure 6: Listing of Cat_in.dat File Used in Run #a.. 16
Figure 7: Fitness vs Generation .. 17
Figure 8: Listing of Cat_in.dat file Used in Run #b .. 18
Figure 9: Listing of Cat_in.dat File Used in Run #c.. 19
Figure 10: Best Fitness vs CPU Time... 21

List of Tables

Table 1: Populations in the String Matching Example ...7
Table 2: Closest Point of Approach (CPA) Bins..9
Table 3: Encounter Angle (EA) Bins ..9
Table 4: Nominal Encounter Counts ... 15
Table 5: Constraint Bins in Run #a ... 16
Table 6: Constraint Bins in Run #b ... 18
Table 7: Constraint Bins in Run #c ... 19
Table 8: Constraint Bins in Time to Solve Test Runs.. 20
Table 9: Time to Solve in Test Runs ... 21

iv

Distribution List
This document, published by FAA ACT-250, was distributed to the following members of the organizations
listed below. Although the final distribution may not be limited to the participants below, as of the publish
date of this document, the list constitutes its main distribution.

Lockheed Martin
Glenn Hahn
Steve Kazunas
Ed McKay
George Loffredo
Berk Sensoy

FAA, AUA-200
Jesse Wijntjes

AST
 Duane Ball
 Gary Wright

MITRE CAASD
Dan Brudnicki
William Arthur

v

Executive Summary
The Traffic Flow Management Branch (ACT-250) at the FAA's William J. Hughes Technical Center
(WJHTC) in Atlantic City, NJ, was tasked to develop scenarios of realistic air traffic for the Accuracy
Acceptance Testing of the User Request Evaluation Tool Core Capability/Limited Deployment (URET
CCLD). The scenarios are required to include a specified quantity of aircraft-to-aircraft and aircraft-to-
airspace encounters. In order to create these encounters ACT-250 will time shift the recorded field data.
Time shifting means to change the start time of a flight, while retaining the relative times of all other flight
related events.

The goal of this study was to determine if a Genetic Algorithm could be used to modify the recorded flight
start times of flights so the desired number of encounters was created. In this study an implementation of
the Genetic Algorithm was developed to solve a simplified version of ACT-250's actual scenario
generation task.

It was found that a Genetic Algorithm was able to solve the simplified problem. It was able to time shift
flights causing the desired number and distribution of aircraft-to-aircraft encounters; and was able to
accomplish this with a minimal amount of air traffic data. The primary concern regarding this
implementation is the time that it may take to solve the problem. Three approaches to reduce the running
time of the program were identified:
• to distribute the software processes,
• to consider alternative implementation methods, and
• to optimize the input parameters.
Each of these suggestions is being further investigated by ACT-250.

1

1. Introduction

1.1 Background
The Federal Aviation Administration (FAA) has contracted Lockheed Martin Corporation Air Traffic
Management Division (LMATM) to develop and deploy a Conflict Probe Decision Support Tool. The
deployment is limited to seven En Route Air Traffic Control Centers to meet the FAA’s Free Flight Phase
1 objective. This limited deployment of the Conflict Probe application is called User Request Evaluation
Tool Core Capability Limited Deployment (URET CCLD) and is based on the URET Daily Use system
developed by MITRE's Center for Advanced Aviation System Development (CAASD) and installed in the
Indianapolis and Memphis centers.

The FAA has tasked the Traffic Flow Management Branch (ACT-250) at the FAA's William J. Hughes
Technical Center in Atlantic City, NJ, to develop air traffic scenarios based on recorded field data. These
scenarios will be used to verify the accuracy requirements of URET CCLD.

AOS-610, in conjunction with ACT-250, ACT-230, and MITRE, collected recorded air traffic data from
the Indianapolis and Memphis Air Route Traffic Control Centers (ARTCCs). Since these scenarios will
have to include non-realistic aircraft-to-aircraft encounters, the field data will need to be modified. ACT-
250 will modify this data by shifting the start times of aircraft flights and possibly by cloning selected
flights. These modifications will be made to create encounters between the aircraft in the test scenarios,
while maintaining the actual routes and profiles the aircraft originally flew.

1.2 Purpose
Although it would be possible to create these scenarios iteratively by changing the flight start times
manually, it is desirable to calculate these changes algorithmically. While researching various random
search techniques, ACT-250 determined that a Genetic Algorithm might be applicable. The following
quote about the applicability of the use of Genetic Algorithms in general, was found to be quite appropriate
to ACT-250’s problem:

. . . if the space to be searched is large, is known not to be perfectly smooth and unimodal
(i.e. consists of a single smooth ‘hill’), or is not well understood, or if the fitness function is
noisy, and if the task does not require a global optimum – i. e., if quickly finding a
sufficiently good solution is enough – a GA will have a chance of being competitive with or
surpassing other ‘weak’ methods (methods that do not use domain-specific knowledge in
their search procedure).” (Mitchell, 1998)

Consequently, ACT-250 initiated as study to investigate the following question: Can a Genetic Algorithm
be used to modify recorded field data so the resulting scenario meets certain constraints?

2

1.3 Scope
This report documents ACT-250's test implementation of a Genetic Algorithm. Its objective was to
determine if a Genetic Algorithm could be used to modify recorded field data so the resulting scenarios
meet certain constraints.

1.4 Document Organization
The next two sections provide background information, with Section 2 describing air traffic scenarios and
Section 3 describing the Genetic Algorithm. Section 4 describes the implementation of the Genetic
Algorithm used in this study. Section 5 presents the results of using this implementation to solve example
problems. The study's conclusions are presented in Section 6. Finally, Sections 7 and 8 contain a list of
acronyms and references, respectively.

3

2. Field Data Based Air Traffic Scenarios

2.1 Air Traffic Scenarios
ACT-250 has developed a laboratory capability to support the integration and testing of air traffic
management systems. Simulations and other activities conducted in this laboratory are used in the
development, technical assessment, and field evaluation of emerging air traffic management decision
support tools.

The air traffic scenarios, used for these simulations, are data files describing the flow of aircraft traffic
through an airspace over a period of time. In the TFM Laboratory these airspaces are generally those
defined for Terminal Radar Approach Control facilities (TRACONs), such as those that manage arrivals
and departures around New York and Dallas/Fort Worth, and Air Route Traffic Control Centers
(ARTCCs), that manage air traffic as it crosses the country.

These data files contain planning/advisory information and radar track data.

• Planning/advisory information describe an aircraft’s planned flight. This includes, for example,
flight plan messages, which present the flight's intended flight path, and interim altitude messages,
which represent air traffic controller clearances for altitude changes.

• Radar Track data represents an aircraft’s actual flight path. This consists of a series of time
stamped, 3-dimensional points; each point having a latitude, a longitude, an altitude, and an associated
time.

Indianapolis ARTCC Airspace

Aircraft Track

Fort Wayne

Rosewood
VORTAC

GEFFS
Intersection

Figure 1: Example of an Aircraft Track

Figure 1 and Figure 2 present an example of recorded field data. The irregular shape in these figures
represents the airspace boundary, which in this case is the Indianapolis ARTCC. The aircraft’s route and
its recorded position data appear as a solid line in Figure 1. The individual track points are seen more

4

clearly in Figure 2. Neither of these figures shows the time or altitude components associated with a track.
The planned route for this track begins on the right side of each of these figures. The recorded flight plan
information shows that the aircraft planned to fly to the GEFFS Intersection, then to turn northwesterly
toward the Rosewood VORTAC, and then to continue on to Fort Wayne.

Indianapolis ARTCC Airspace

Aircraft TrackGEFFS
Intersection

Figure 2: Blow-up of the Example Aircraft Track

2.2 Playback Scenarios
One form of these scenario files is a playback scenario. These generally utilize proprietary formats
specific to a decision support tool. Usually, but not necessarily, a playback scenario is created from
recorded field data. For example, the User Request Evaluation Tool (URET) is a decision support tool
developed by MITRE/CAASD for use in an ARTCC. To support its development MITRE implemented
the capability of playing recorded field data through the tool. Similarly the National Aeronautics and Space
Administration/Ames Research Center (NASA/ARC) developed the Center TRACON Automation
System (CTAS), which provides a similar capability, but uses a different format. This recorded field data
for both of these tools is the intercomputer messages containing information such as flight plan data and
track data.

During algorithm development and functional testing it is often adequate to use artificial scenarios.
However, playback scenarios created from recorded field data are needed in evaluating decision support
tools because they provide the most realistic simulation environment. Often air traffic controllers from the
facility at which a tool is being considered for deployment participate in simulations to evaluate the
algorithm in a field environment. These controllers prefer a simulation environment that is as close to their
live environment as possible.

5

Frequently it is necessary to modify the scenarios. Two examples of this need are to test systems against
anticipated growth and to test the capabilities of decision support tools.

• Anticipated growth - The FAA projects there will be a steady increase in the number of aircraft
handled in ARTCCs; from 41.4 million aircraft handled in 1997 to an estimated 61.8 million in 2020.
(FAA, 1996) Simulations based on increasing current traffic flows to the projected workloads are
necessary to test the capabilities of air traffic control systems.

• Capability Testing - Decision support tools, such as those being developed by MITRE/CAASD and
NASA/ARC, are usually developed using test data. In order to ensure their operational capability
these tools also need to be tested with field data. ACT-250 has used field data in two recent studies.
The URET Conflict Prediction Study (Cale, 1998) used simulation scenarios based on field data
recorded at the Indianapolis ARTCC. The URET/CTAS Trajectory Accuracy study (Paglione, 1998)
used playback scenarios based on field data recorded at the Indianapolis ARTCC for URET and Fort
Worth ARTCC for CTAS.

2.3 URET/CCLD Accuracy Scenarios
The scenarios ACT-250 will develop for URET CCLD accuracy testing will be playback scenarios based
on recorded field data. The URET CCLD System Specification Document (SSD) (FAA, 1998) details the
requirements for the accuracy test. For example the SSD states a maximum value for the average closest
point of approach (CPA) and minimum value for the standard deviation of CPA, where CPA is the
distance at which two aircraft are at minimum separation from one another. Since field data is recorded at
an operational ARTCC, no aircraft-to-aircraft conflicts will be present. However, in order to test these
tools, conflicts are necessary. These conflicts will be created by modifying the start times of each aircraft
causing the aircraft to fly the same track, but starting at a different time will do this. This time modification
is done through time shifting.

Time shifting means to change the start time for a flight while retaining the relative times of all other flight
related events. ACT-250 has investigated two time shifting techniques: time compression and random time
adjustment.

• Time compression means to multiple the difference between a track's start time and some arbitrary
time base by a multiplier.

• Random time adjustment means to randomly display a track's start time using either a uniform or
normal frequency distribution.

In preliminary studies ACT-250 concluded that a combination of these two techniques can effectively
create scenarios with sufficient numbers of conflict encounters. However, future constraints (such as
requiring aircraft to be flying along an ATC cleared route) may require an unacceptable amount of
playback scenarios in order to create a sufficient number of encounters. In addition, although these
techniques create the required number of conflict encounters, the distribution of these encounters can only
be achieved through trial and error. An algorithm, such as the Genetic Algorithm, that derives individual
delta times that can be added to (or subtracted from) the original flight start times in order to achieve the
required quantity and distribution of encounters is desired.

6

3. Genetic Algorithm

3.1 Introduction to Genetic Algorithms
John Holland invented Genetic algorithms (GAs) at the University of Michigan in the 1960s and 1970s and
are the most prominent example of evolutionary programming. Two sources for information regarding the
history of Genetic Algorithms and evolutionary programming are the following books:

• Genetic Algorithms in Searching, Optimization, and Machine Learning. This book presents a
history of GAs along with a comprehensive information regarding the study of GAs and the application
of GAs. (Goldberg, 1989)

• An Introduction to Genetic Algorithms. This book presents a history of Evolutionary Computation
along with a good introduction to the Genetic Algorithm. (Mitchell, 1998)

There is no specific GA; instead GAs are a class of algorithms which derive their behavior from a
metaphor of the processes of evolution. As such GAs are an approach to solving a problem. All GAs do
have a number of traits in common. These are: a population of chromosomes, a fitness function that
assigns a score to each chromosome, some form of selection according to fitness, crossover to produce
new offspring, and random mutation. These traits will be presented in the following subsections through
the use of a simple program example. The pseudocode for this program is presented in Figure 3.

Consider a program that is to generate a ten-character string matching the known string
"HELLOWORLD". Assuming that the character string is restricted to uppercase alphabetic characters,
the solution space for this problem consists of all possible ten-character strings or 2610 strings. A program
that tests each of these possible solutions would be time prohibitive; however, a program implementing a
GA can solve this problem effectively. In fact, in a computer program implementing this example the
known string was generally found after about 1000 iterations, and in as few as 687 iterations. This is
significantly fewer iterations than would be required to evaluate each of the more than 1.4x1014 possible
solutions.

1 Initialize the population ;
2 Evaluate the fitness of the population ;
3 While (population fitness < termination criteria)
4 {
5 Select parents from the population ;
6 Randomly mutate the offspring population’s chromosomes ;
7 Set the population equal to the offspring population ;
8 Evaluate the fitness of the population ;
9 }

Figure 3: Genetic Algorithm Pseudocode

7

3.2 Population of Chromosomes
In a GA, a chromosome is defined as an array of bits or characters that represents a potential solution to a
problem. Each element of the array is analogous to a gene. The values each of these genes can assume
are defined as its alleles. A population of chromosomes is therefore a subset of all solutions to the
problem. Since any ten-character string represents a potential solution to the example problem, a
chromosome will be defined as a ten-character string for this example.

As indicated in line 1 of the pseudocode, an initial population is required for a GA. Usually this is done by
selecting a random sample from the total population. In the example, ten strings, each containing ten
randomly selected characters, were selected as the initial population. Such a random population is shown
in the first column of Table 1 labeled Generation #0.

Table 1: Populations in the String Matching Example

Generation #0 Selected Crossover Mutated
0 KJTIKDRJHI (1) YYLSXWSBFD THAKWWSBFD THAKWWSBFD (4)
1 THAKWKNKXJ (1) THAKWKNKXJ YYLSXKNKXJ YYLSTKNKXJ (2)
2 KLDOAWXLTT (2) YYLSXWSBFD YYLSXWSBFD YYLSXWSBFD (8)
3 QUILMTVKDI (2) KLDOAWXLTT KLDOAWXLTT KLDOAWXLTT (2)
4 DPZTCUCAMD (2) YYLSXWSBFD YYLSXWSBFD YYLSXWSBFD (8)
5 ISQNGGFETB (1) QUILMTVKDI QUILMTVKDI QUILMTVKDI (2)
6 WODVHGSLVW (1) YYLSXWSBFD YYLSXWSBFD YYLSXWSBFD (8)
7 QGKMWUHAIW (1) YYLSXWSBFD YYLSXWSBFD YYLSXWSBFD (8)
8 ULGNHTTRFE (2) YYLSXWSBFD ULGNHWSBFD ULGNHWSBFD (4)
9 YYLSXWSBFD (8) ULGNHTTRFE YYLSXTTRFE YYLSXTTRFE (4)

3.3 Fitness Function
The fitness function in a GA produces a score, which is a measure of how well a chromosome solves the
problem. The fitness of the population is evaluated at lines 2 and 9 of the pseudocode. This reflects the
need to test the population fitness at the top of the while loop which extends from lines 2 through 12. The
fitness of a population is usually considered to be either the average or best fitness of the chromosomes in
the population.

The fitness function in the example program is based on how many of the ten characters in a chromosome
match the known string. The chromosome’s fitness is set equal to 2i where i is the number of matches.
The value in parenthesis in column 1 of Table 1 is the chromosome's fitness. E.g., chromosome #2 has one
character in common with "HELLOWORLD" – the 'W' in character position six – therefore the fitness of
chromosome #2 is equal to 21 or 2. In the example the average fitness of the population is 2.1.

3.4 Selection According to Fitness
All GAs have some form of selection based on fitness. Generally parent chromosomes are randomly
selected from the population with the probability of selection being directly proportional to a chromosome’s
fitness. In the example, the second column of Table 1, labeled Selected, represents ten chromosomes
randomly selected from the Generation #0 population. These were selected based on each individual

8

chromosome's contribution to the total fitness. I.e. the probability of Chromosome #2 being selected was
0.095 (2/21, where 2 is the chromosome's individual contribution to the total fitness and 21 is the
population's total fitness). This random selection was done "with replacement." This is seen in this example
in that Chromosome # 9, which had the highest probability of selection (0.381 = 8/21) was selected six
times.

Note that this selection process does not need to be static. Sometimes, in order to lessen the possibility of
an early-occurring highly fit chromosome dominating the solution, this fitness function is scaled so less fit
chromosomes have a better chance of survival in the earlier generations and the more fit chromosomes
have a better chance of survival in the later generations. (Goldberg, 1989)

3.5 Crossover to Produce New Offspring
The next step in a GA – line 6 of the pseudocode – is to create an offspring population based on
crossover. Crossover, which occurs according to a probability called the Probability of Crossover, causes
the chromosomes of the two parents to be combined according to some rule to create new chromosomes.
This is usually done by swapping the parent’s bits at randomly selected locus position(s).

In our example the chromosomes were paired sequentially for crossover and a Probability of Crossover
equal to 0.25 was used. In the example, this crossover rule caused the first five characters of each
chromosome of the pair to be swapped. The result of crossover is the chromosomes in the column labeled
Crossover. Note in this example that crossover only occurred for the first pair (i.e., selected
Chromosomes #0 and #1).

3.6 Random Mutation
The chromosomes of this offspring population are then considered for mutation in which the individual bits
within the new chromosome may then be individually changed with some probability called the Probability
of Mutation.

In the example, each character was mutated based on the probability of 0.01. Table 1 shows that in this
example only one character was mutated. This is the fifth character in Chromosome # 1 (i.e., the
character 'X' was mutated to the character 'T'). The resulting population of chromosomes is shown in
Table 1as the column labeled Mutated. The fitness of each of these new chromosomes is shown in
parenthesis. This offspring population is then moved to the generation population and the fitness of this
population is calculated. The average fitness of this new population is 5.0; however, it is noted that the one
chromosome with the highest fitness is represented four times. This means that this most fit chromosome
will have a higher probability of being selected as a parent as the loop is continued until the desired fitness
is achieved.

9

4. Implementation of the Genetic Algorithm

4.1 Introduction to the Implementation
ACT-250 developed the program Cat1, which is an implementation of a Genetic Algorithm that solves a
simplified version of the problem they have been tasked to solve. The problem has been simplified in that
Cat only uses instantaneous spatial proximity to determine encounters and encounter geometry. Other
factors such as time are disregarded. Cat uses track data from previous studies ACT-250 has done. This
track data has been interpolated and otherwise “cleaned up,” which eliminated many of the problems
inherent with recorded field data.

Cat compares each track’s track points with the track points from all the other tracks to find aircraft-to-
aircraft encounters. These encounters are defined as situations when the closest point of approach (CPA)
between two tracks is less than 20 nautical miles in the horizontal plane and less than either 1000 or 2000
feet in the vertical axis, depending on the aircraft’s altitude. In addition to the distance at CPA, the
encounter angle (EA) is calculated. This angle is defined as 180° when two flights are flying directly
toward each other and 0° when two aircraft are in-trail. Cat tallies the occurrences in the appropriate bins
using the bins defined in Table 2 and Table 3. Cat then uses a GA to find delta times to be subtracted from
the individual track start times so that the counts in these bins are within desired lower and upper bounds.
These bounds are the input parameters listed in the Low Bound and High Bound columns. These
parameters are defined in Section 4.2

Bin Low Bound High Bound
0 nm ≤ CPA < 5 nm DesiredD05lo DesiredD05hi

5 nm ≤ CPA < 10 nm DesiredD10lo DesiredD10hi

10 nm ≤ CPA < 15 nm DesiredD15lo DesiredD15hi

15 nm ≤ CPA < 20 nm DesiredD20lo DesiredD20hi

Table 2: Closest Point of Approach (CPA) Bins

Bin Low Bound High Bound
0 deg ≤ EA < 30 deg DesiredA30lo DesiredA30hi

30 deg ≤ EA < 60 deg DesiredA60lo DesiredA60hi

60 deg ≤ EA < 90 deg DesiredA90lo DesiredA90hi

90 deg ≤ EA < 120 deg DesiredA120lo DesiredA120hi

120 deg ≤ EA < 150 deg DesiredA150lo DesiredA150hi

150 deg ≤ EA < 180 deg DesiredA180lo DesiredA180hi

Table 3: Encounter Angle (EA) Bins

1 The program Cat was named for the character Cat on the British television series Red Dwarf. Cat is a humanized feline; the

result of 3,000,000 years of evolution on the space ship Red Dwarf after all but one of its crew were killed by a radiation leak.Cat
was developed using gcc, the GNU C/C++ Version 2.7.2.3 compiler, and libg+, the GNU C/C++ Version 2.7.2 libraries. Cat was
implemented on a Sun Ultra ES-4500 400 MHz workstation using the Solaris Version 2.6 operating system.

10

4.2 Program Input
The following inputs are provided to Cat:

• DesiredFit - The minimum value of the fitness function which will be considered acceptable as a
solution to the problem.

• DesiredD05lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have a Closest Point of Approach (CPA) in the interval [0, 5) nautical miles. (See Table 2.)

• DesiredD05hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have a Closest Point of Approach (CPA) in the interval [0, 5) nautical miles. (See Table 2.)

• DesiredD10lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have a Closest Point of Approach (CPA) in the interval [5, 10) nautical miles. (See Table 2.)

• DesiredD10hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have a Closest Point of Approach (CPA) in the interval [5, 10) nautical miles. (See Table 2.)

• DesiredD15lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have a Closest Point of Approach (CPA) in the interval [10, 15) nautical miles. (See Table 2.)

• DesiredD15hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have a Closest Point of Approach (CPA) in the interval [10, 15) nautical miles. (See Table 2.)

• DesiredD20lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have a Closest Point of Approach (CPA) in the interval [15, 20) nautical miles. (See Table 2.)

• DesiredD20hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have a Closest Point of Approach (CPA) in the interval [15, 20) nautical miles. (See Table 2.)

• DesiredA30lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [0, 30) degrees. (See Table 3.)

• DesiredA30hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [0, 30) degrees. (See Table 3.)

• DesiredA60lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [30, 60) degrees. (See Table 3.)

• DesiredA60hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [30, 60) degrees. (See Table 3.)

11

• DesiredA90lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [60, 90) degrees. (See Table 3.)

• DesiredA90hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [60, 90) degrees. (See Table 3.)

• DesiredA120lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [90, 120) degrees. (See Table 3.)

• DesiredA120hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [90, 120) degrees. (See Table 3.)

• DesiredA150lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [120, 150) degrees. (See Table 3.)

• DesiredA150hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [120, 150) degrees. (See Table 3.)

• DesiredA180lo - The lower constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [150, 180) degrees. (See Table 3.)

• DesiredA180hi - The upper constraint bound for the number of aircraft-to-aircraft encounters that
have an Encounter Angle (EA) in the interval [150, 180) degrees. (See Table 3.)

• MaxGen - The maximum number of generations that will be allowed before terminating the program.

• PopNbr - The size of the population of chromosomes.

• BaseTime - An arbitrary time prior to the start time of the first track.

• Pc - Probability of Crossover.

• Pm - Probability of Mutation.

• Seed - Seed for pseudorandom number generator.

4.3 Program Processes
Cat implements the GA in the following manner:

• Definition of the Chromosome Population – In Cat a chromosome consists of a sequence of delta
times (genes) and is represented as { nttt ∆∆∆ ,...,, 21 }, where there is a delta time associated with each

aircraft. For example, the chromosome {0, 750, 90, …} means to start the first flight at its original
time, to start the second flight 750 seconds earlier than its original start time, to start the third flight 90

12

seconds earlier, etc.2 Each gene can assume 360 values (alleles) (i.e., 0, 1, 2, …, 359) representing the
delta times in tens of seconds.

Cat constructs an initial population consisting of one chromosome that represents the start times of the
original field data. I.e., the chromosome {0, 0, 0, …}. The remaining chromosomes have delta times
selected randomly from a uniform distribution in the interval 0 to 359. Then number of chromosomes in
the population is an input parameter (NbrPop).

• Definition of the Fitness Function – Cat's goal is to find a set of measured values that fall within
two desired bounds (Represented as low bound and high bound in Table 2 and Table 3). The fitness
function implemented in Cat rewards both individual and multiple instances where this occurs; while at
the same time penalizing instances in which the measured value is far from either a lower or an upper
bound.

The fitness function developed to achieve these two goals is:

N

f

Fitness
2

2=

where

∑
=

=
N

i
iff

1

with i indicating the constraint bound, N equal to the number of constraint bounds, and














>





 −+

≤≤

<






=

highboundmeasuredif
lowbound

measuredlowboundhighbound

highboundmeasuredlowboundif

lowboundmeasuredif
lowbound

measured

fi
2

2

1

The value of if provides a value of one if the measured value is between the high and low bounds

and rapidly decreases to zero as the measured value gets further away from either of the bounds.

Once the individual values of if are computed their sum f is evaluated as a floating point number in

the interval 0 to N. The fitness is then calculated as:

N

f

Fitness
2

2=

 Figure 4 is a graphical representation of the individual contribution of each of the constraint bins (if).

Figure 5 is a graphical representation of how Fitness varies as a function of the sums of the individual
contributions (f), where the number of constraint bins is 10.

2 Note, as time shifting is implemented in Cat, an aircraft can only be started earlier than its original start time.

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
d

iv
id

u
al

 f
it

n
es

s
co

n
tr

ib
u

ti
o

n

Lower Bound Upper Bound

Figure 4: Individual Contribution of Constraint Bin to Fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

Sum of individual fitness contributions

F
it

n
es

s

Figure 5: Graph of the Fitness Function

• Definition of the Selection Process - The number of parents selected is the same as the number of
chromosomes in the population. The selection process uses a technique called “stochastic universal
sampling,” which is a different process than the selection process described in the example (Section
3.4). This technique ensures that fit chromosomes are not statistically lost in the selection process.
(Mitchell, 1998, Pg. 167)

• Definition of the Crossover Technique - The occurrence of crossover depends on an input
parameter Pc, the probability of crossover. When crossover occurs the technique uses two locus
points. This technique is a different process than the crossover process described in the example
(Section 3.5), which was a one-point process. In this two-point process two points are randomly
selected and the segment between the two points are swapped between the two parent chromosomes.

14

This technique eliminates positional bias that some researchers have noted in the one-point technique.
(Mitchell, 1998, Pg. 172)

• Definition of the Mutation Technique - The occurrence of mutation depends on an input
parameter Pm, the Probability of Mutation. When mutation occurs each gene is replaced with a delta
time selected randomly from a uniform distribution in the interval 0 to 359.

4.4 Program Output
The following output files are created by Cat:

• Cat.log - This ASCII log file contains information regarding the execution of the program. It is used
primarily for debugging.

• Cat.dat - This ASCII file contains sequential information for each generation. Each line contains:
• generation number
• maximum fitness of a chromosome through this generation
• average fitness in this generation
• elapsed time since run began

• Cat.bst – This ASCII file contains information about the chromosome(or chromosomes) with the
highest fitness.

15

5. Implementation Results

5.1 Introduction to Implementation Test Runs
Two series of test runs were performed. The first series were test runs to determine if Cat could solve the
problem. The second were test runs to analyze how long it took Cat to repetitively solve a single problem.

All of these test runs were made using one hour of interpolated track data recorded at the Indianapolis
ARTCC. The nominal results showed that this data consisted of 493 aircraft; therefore each chromosome
had 493 genes. The results also showed there were nominally 344 aircraft-to-aircraft encounters.3 The
distribution of these nominal encounters for Closest Point of Approach (CPA) and for Encounter Angle
(EA) is shown in Table 4.

Table 4: Nominal Encounter Counts

Measure Nom
0 ≤ CPA < 5 20

5 ≤ CPA < 10 68

10 ≤ CPA < 15 119

15 ≤ CPA < 20 137

0 ≤ EA < 30 83

30 ≤ EA < 60 44

60 ≤ EA < 90 51

90 ≤ EA < 120 51

120 ≤ EA < 150 58

150 ≤ EA < 180 57

5.2 Ability to Solve Test
The solvability tests consisted of three runs. The first run (called Run #a) attempted to evenly distribute
the encounters across the constraint bins. Distributing the 344 encounters over the five CPA bins would
result in 86 encounters per bin. Distributing the 344 encounters over the six EA bins would result in about
57 encounters per bin. The input for the test run asked the program to find a solution which would result in
85 to 87 encounters in each of the CPA bins and 56 to 58 encounters in each of the EA bins. It also
specified a high value of 0.99 for the desired fitness of the solution. This input is shown in Figure 6

3 It important to note there is no correlation between these “program encounters” and “real encounters.” The recorded field data
used in this study had no aircraft-to-aircraft violations during the sample time.

16

#This is the Cat input file
DesiredFit 0.99
DesiredD05lo 85
DesiredD10lo 85
DesiredD15lo 85
DesiredD20lo 85
DesiredD05hi 87
DesiredD10hi 87
DesiredD15hi 87
DesiredD20hi 87
DesiredA30lo 56
DesiredA60lo 56
DesiredA90lo 56
DesiredA120lo 56
DesiredA150lo 56
DesiredA180lo 56
DesiredA30hi 58
DesiredA60hi 58
DesiredA90hi 58
DesiredA120hi 58
DesiredA150hi 58
DesiredA180hi 58
MaxGen 4000
PopNbr 20
BaseTime 46800
Pc 0.75
Pm 0.01

Figure 6: Listing of Cat_in.dat File Used in Run #a

Table 5: Constraint Bins in Run #a

Measure Lo Hi #a
0 ≤ CPA < 5 85 87 85

5 ≤ CPA < 10 85 87 85

10 ≤ CPA < 15 85 87 87

15 ≤ CPA < 20 85 87 87

0 ≤ EA < 30 56 58 58

30 ≤ EA < 60 56 58 58

60 ≤ EA < 90 56 58 56

90 ≤ EA < 120 56 58 57

120 ≤ EA < 150 56 58 58

150 ≤ EA < 180 56 58 57

The results of Run #a are shown in Table 5, in which it is seen that Cat found a set of delta times for
which the resultant encounter counts fell within all of the bins – i.e., this solution has a fitness value of 1.0.
Cat found this solution in 173 generations and took 2955.73 seconds to solve. It must be emphasized,
although there were 344 encounters in this solution, there are no assurances that these are the same 344

17

encounters that occurred in the nominal run. It is likely that the time shifting determined by the GA would
result in different encounters involving different flight combinations.

Figure 7 presents a graph showing how the fitness of the population increases with the evolving
generations of the chromosome population. The top line represents the best fitness encounter up to that
generation. The bottom line represents the average fitness of the generation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

Best Fitness

Average Fitness

Figure 7: Fitness vs Generation

The second test to solve (Run #b) asked Cat to increase the number of encounters by 10% to 20%. These
bounds are seen in the input presented in Figure 1. Note, in addition, the desired fitness was lowered to
0.975.

The results of Run #b are shown in Table 6, in which it is seen that Cat found a set of delta times for
which the resultant encounter counts fell within all but one of the bins – it only has 63 encounters in the
120 ≤ EA < 150 bin, which is below the low bound of 64 encounters. Run #b achieved these results in
172 generations with a best fitness of 0.978738.

18

#This is the Cat input file
DesiredFit 0.975
DesiredD05lo 22
DesiredD10lo 75
DesiredD15lo 131
DesiredD20lo 151
DesiredD05hi 24
DesiredD10hi 82
DesiredD15hi 143
DesiredD20hi 164
DesiredA30lo 91
DesiredA60lo 48
DesiredA90lo 56
DesiredA120lo 56
DesiredA150lo 64
DesiredA180lo 63
DesiredA30hi 100
DesiredA60hi 53
DesiredA90hi 61
DesiredA120hi 61
DesiredA150hi 70
DesiredA180hi 68
MaxGen 4000
PopNbr 20
BaseTime 46800
Pc 0.75
Pm 0.01

Figure 8: Listing of Cat_in.dat file Used in Run #b

Table 6: Constraint Bins in Run #b

Measure Lo Hi #b
0 ≤ CPA < 5 22 24 24

5 ≤ CPA < 10 75 82 77

10 ≤ CPA < 15 131 143 133

15 ≤ CPA < 20 151 164 154

0 ≤ EA < 30 91 100 91

30 ≤ EA < 60 48 53 51

60 ≤ EA < 90 56 61 60

90 ≤ EA < 120 56 61 57

120 ≤ EA < 150 64 70 63

150 ≤ EA < 180 63 61 66

19

The third test is closer to the real problem that ACT-350 will need to solve. In this test Cat was asked to
increase the number of encounters and to distribute these encounters across the bins. The input file for this
test is shown in Figure 9.

The constraint bins for the solution obtained by Cat are shown in Table 7. The fitness for this function was
0.985589. This solution was achieved in 242 generations which took 4235.17 seconds of CPU time.

#This is the Cat input file
DesiredFit 0.975
DesiredD05lo 95
DesiredD10lo 95
DesiredD15lo 95
DesiredD20lo 95
DesiredD05hi 105
DesiredD10hi 105
DesiredD15hi 105
DesiredD20hi 105
DesiredA30lo 60
DesiredA60lo 60
DesiredA90lo 60
DesiredA120lo 60
DesiredA150lo 60
DesiredA180lo 60
DesiredA30hi 65
DesiredA60hi 65
DesiredA90hi 65
DesiredA120hi 65
DesiredA150hi 65
DesiredA180hi 65
MaxGen 4000
PopNbr 20
BaseTime 46800
Pc 0.75
Pm 0.01

Figure 9: Listing of Cat_in.dat File Used in Run #c

Table 7: Constraint Bins in Run #c

Measure Lo Hi #b
0 ≤ CPA < 5 95 105 94

5 ≤ CPA < 10 95 105 95

10 ≤ CPA < 15 95 105 96

15 ≤ CPA < 20 95 105 104

0 ≤ EA < 30 60 65 65

30 ≤ EA < 60 60 65 65

60 ≤ EA < 90 60 65 64

90 ≤ EA < 120 60 65 65

120 ≤ EA < 150 60 65 65

150 ≤ EA < 180 60 65 65

20

5.3 Time to Solve Test
Ten runs were made to analyze the time to solve. Except for the random seed (Seed) for the random
number generator, these ten runs had the same input, which was the same input used for Run #c. This
input is shown in Figure 9.

Since the GA is a stochastic process each of the ten runs produced different results. The counts for the
closest point of approach (CPA) and encounter angles (EA) for these encounters are summarized for the
nominal field data and for each of the ten runs is shown in Table 8. Note that: the second test run (Run
#1) had a final generation of the population containing two chromosomes with equal acceptable fitness
values. The number of encounters in the constraint bins for each of these solutions is presented in the
table.

Table 8: Constraint Bins in Time to Solve Test Runs

Measure Nom #0 #1a #1b #2 #3 #4 #5 #6 #7 #8 #9
0 ≤ CPA < 5 20 95 95 94 95 95 95 95 94 94 95 95

5 ≤ CPA < 10 68 96 94 96 100 95 96 95 96 96 96 94

10 ≤ CPA < 15 119 96 99 95 98 99 95 99 96 98 95 97

15 ≤ CPA < 20 137 98 97 96 94 95 102 97 95 96 101 97

0 ≤ EA < 30 83 65 64 65 65 65 65 66 65 65 66 65

30 ≤ EA < 60 44 66 65 64 65 65 62 65 63 64 64 65

60 ≤ EA < 90 51 61 65 64 65 60 65 65 61 64 64 62

90 ≤ EA < 120 51 64 62 61 66 66 66 63 64 62 65 65

120 ≤ EA < 150 58 64 64 64 64 63 65 62 64 64 64 62

150 ≤ EA < 180 57 65 65 63 65 65 65 65 64 65 64 64

Since each of the solutions consists of 493 delta times, and we were only looking for a possible solution we
did not attempt to compare the solutions. We did analyze how long these runs took to achieve and
acceptable solution. Figure 10 is a plot of the best fitness value as a function of elapsed CPU processing
time for each of the ten runs. Each line in this graph represents the results of a different run.

Table 9 shows the time that was required to achieve a solution in each of the ten runs. A solution was
achieved in as little as 1890.690 seconds and as high as 4017.100 seconds. The average time to solve the
problem for these ten runs was 2993.739 seconds with a standard deviation of 628.173 seconds.

21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 600 1200 1800 2400 3000 3600 4200

CPU Time (seconds)

F
it

n
es

s

Figure 10: Best Fitness vs CPU Time

Table 9: Time to Solve in Test Runs

Run Number Time to Solve
0 3331.14
1 3844.34
2 2787.15
3 2673.55
4 2907.13
5 4017.10
6 3051.04
7 2449.61
8 2986.64
9 1890.69

22

6. Conclusions
The most significant finding in this study is that a Genetic Algorithm can be used to modify recorded field
data so the resulting scenario met both encounter constraints. Specifically, the start times of recorded
tracks were modified so that the desired number of aircraft-to-aircraft encounters that had closest points
of approach and encounter angles in specific bins was achieved. Another significant finding was that the
fitness function that was designed for this implementation appears to work well. The time required to solve
the simplified problem was acceptable; however, because of the additional constraints and longer playback
scenarios, it is a concern if ACT-250 implements a GA to solve their task. ACT-250 should consider
methods that might reduce the time to solve. These could include:

• Distributing the software processes. Cat did not take advantage of the four CPUs that are
available on the processor that will be used by ACT-250. Distributing the functions between CPUs
would decrease the time to solve.

• Considering alternative methods for selection, crossover, and mutation. Researchers have
investigated many other methods. These, or extensions of them, should be considered.

• Optimizing the input parameters. Although preliminary tests showed there may not be a significant
correlation between PopNbr, Pc, and Pm, it may we worth while to conduct further tests to see if
these parameters affect the time to solve the problem.

In summary, the GA offers ACT-250 a systematic method to generate playback scenarios that contain the
required number and distribution of constrained encounters. In addition, the GA will decrease the quantity
of playback scenarios required by increasing the number of encounters within each scenario more
effectively.

23

7. Acronyms

ACT-250 Traffic Flow Management Branch
ARC Ames Research Center
ARTCC Air Route Traffic Control Center
ASCII American Standard Code for Information Interchange
CAASD Center for Advanced Aviation Systems Development
CCLD Core Capability/Limited Deployment
CPA Closest Point of Approach
CPU Central Processing Unit
CTAS Center TRACON Automation System
EA Encounter Angle
FAA Federal Aviation Administration
GA Genetic Algorithm
GNU GNU’s Not Unix4

Mhz Mega hertz
NASA National Aeronautics and Space Administration
SSD System Specification Document
TFM Traffic Flow Management
TRACON Terminal Radar Approach Control Facility
URET User Request Evaluation Tool
VORTAC VHF Omindirectional Range Collocated with Tactical Air Navigation
WJHTC William J. Hughes Technical Center

4 See www.gnu.org.

24

8. References

Mary Lee Cale, Michael Paglione, Dr. Hollis Ryan, Dominic Timoteo, Robert Oaks, "User
Request Evaluation Tool (URET) Conflict Prediction Accuracy Report," DOT/FAA/CT-TN98/8,
April, 1998, FAA Technical Center, NJ.

David E. Goldberg, Genetic Algorithms in Searching, Optimization, and Machine Learning,
Addison-Wesley, 1989.

Federal Aviation Administration, "FAA Long Range Aviation Forecasts Fiscal Years 2010, 2015,
and 2020," FAA-APO-08-9, June, 1998. (The FAA issues its 12-year forecast in the spring of
each year. This is used for both manpower and facility planning as well as policy analysis.)

Federal Aviation Administration, "User Request Evaluation Tool Core Capability Limited
Deployment System Specification Document", FAA-ER-2929, October, 1998.

Melanie Mitchell, An Introduction to Genetic Algorithms, The MIT Press, Cambridge, MA,
1998.

Mike M. Paglione, Dr. Hollis F. Ryan, Robert D. Oaks, J. Scott Summerill, and Mary Lee Cale,
“Trajectory Prediction Accuracy Report: User Request Evaluation Tool (URET)/Center
TRACON Automation System (CTAS), DOT/FAA/CT-TN99/10, May, 1999.

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Distribution List
	Executive Summary
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Scope
	1.4 Document Organization

	2 Field Data Based Air Traffic Scenarios
	2.1 Air Traffic Scenarios
	2.2 Playback Scenarios
	2.3 URET/CCLD Accuracy Scenarios

	3 Genetic Algorithms
	3.1 Introduction to Genetic Algorithms
	3.2 Populations of Chromosomes
	3.3 Fitness Function
	3.4 Selection According to Fitness
	3.5 Crossover to Produce New Offspring
	3.6 Random Mutation

	4 Implementation of the Genetic Algorithm
	4.1 Introduction to the Implementation
	4.2 Program Input
	4.3 Program Processes
	4.4 Program Output

	5 Implementation Results
	5.1 Introduction to Implementation Test Runs
	5.2 Abililty to Solve Test
	5.3 Time to Solve Test

	6 Conclusions
	7 Acronyms
	8 References

